_
Q
Ø
Ν
0
Q
: ب
J
d
≥
₹
₹
<
$\overline{}$
• • •
Q
+
-
모

Title Atomic spectrometric techniques in environment	Code 1010702311010710731
Field Technologie ochrony środowiska - stacjonarne II stopnia	Year / Semester
Specialty Monitoring	Course Core
Hours Lectures: 2 Classes: - Laboratory: 2 Projects / seminars: -	Number of credits 6
	Language polish

Lecturer:

prof. dr hab. Henryk Matusiewicz

Instytut Chemii i Elektrochemii Technicznej

ul. Piotrowo 3 60-965 Poznań

Faculty:

Faculty of Chemical Technology

ul. Piotrowo 3 60-965 Poznań

tel. (061) 665-2351, fax. (061) 665-2852

e-mail: office_dctf@put.poznan.pl

Status of the course in the study program:

-Basic course

Assumptions and objectives of the course:

-To give students knowledge, more detailed than in basic course (Instrumental Analysis), about atomic spectrometric techniques, particularly useful in environmental sciences.

Contents of the course (course description):

-Atomic absorption spectrometry (AAS): atomization techniques, absorption interferences, quantitative analysis, special techniques in AAS. Optical emission spectrometry (OES): theory of atomic spectra formation, modern excitation sources - inductively coupled plasma (ICP), microwave induced plasma (MIP), direct current plasma (DCP), quantitative analysis, qualitative and quantitative spectrographic technique. Absorption UV-Vis spectrophotometry: theory of molecular electronic transitions, instrumental design, quantitative spectrophotometric analysis.

Introductory courses and the required pre-knowledge:

-Basic knowledge of analytical chemistry and instrumental analysis

Courses form and teaching methods:

-Lectures, laboratory - individual work with students

Form and terms of complete the course - requirements and assessment methods:

-Periodical written tests and final oral or written examination

Basic Bibliography:

Additional Bibliography:

_